|
@@ -0,0 +1,568 @@
|
|
|
|
+use candle_core::{DType, Device, Result, Tensor};
|
|
|
|
+use candle_nn::{Embedding, VarBuilder};
|
|
|
|
+use serde::Deserialize;
|
|
|
|
+
|
|
|
|
+pub const DTYPE: DType = DType::F32;
|
|
|
|
+
|
|
|
|
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize)]
|
|
|
|
+#[serde(rename_all = "lowercase")]
|
|
|
|
+enum HiddenAct {
|
|
|
|
+ Gelu,
|
|
|
|
+ Relu,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct HiddenActLayer {
|
|
|
|
+ act: HiddenAct,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl HiddenActLayer {
|
|
|
|
+ fn new(act: HiddenAct) -> Self {
|
|
|
|
+ let span = tracing::span!(tracing::Level::TRACE, "hidden-act");
|
|
|
|
+ Self { act, span }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, xs: &Tensor) -> candle_core::Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ match self.act {
|
|
|
|
+ // TODO: The all-MiniLM-L6-v2 model uses "gelu" whereas this is "gelu_new", this explains some
|
|
|
|
+ // small numerical difference.
|
|
|
|
+ // https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/activations.py#L213
|
|
|
|
+ HiddenAct::Gelu => xs.gelu(),
|
|
|
|
+ HiddenAct::Relu => xs.relu(),
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#[derive(Debug)]
|
|
|
|
+pub struct Linear {
|
|
|
|
+ weight: Tensor,
|
|
|
|
+ bias: Option<Tensor>,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl Linear {
|
|
|
|
+ pub fn new(weight: Tensor, bias: Option<Tensor>) -> Self {
|
|
|
|
+ let span = tracing::span!(tracing::Level::TRACE, "linear");
|
|
|
|
+ Self { weight, bias, span }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ pub fn forward(&self, x: &Tensor) -> candle_core::Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let w = match x.dims() {
|
|
|
|
+ &[bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?,
|
|
|
|
+ _ => self.weight.t()?,
|
|
|
|
+ };
|
|
|
|
+ let x = x.matmul(&w)?;
|
|
|
|
+ match &self.bias {
|
|
|
|
+ None => Ok(x),
|
|
|
|
+ Some(bias) => x.broadcast_add(bias),
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#[derive(Debug)]
|
|
|
|
+pub struct LayerNorm {
|
|
|
|
+ weight: Tensor,
|
|
|
|
+ bias: Tensor,
|
|
|
|
+ eps: f64,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl LayerNorm {
|
|
|
|
+ pub fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
|
|
|
|
+ let span = tracing::span!(tracing::Level::TRACE, "layer-norm");
|
|
|
|
+ Self {
|
|
|
|
+ weight,
|
|
|
|
+ bias,
|
|
|
|
+ eps,
|
|
|
|
+ span,
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let x_dtype = x.dtype();
|
|
|
|
+ let internal_dtype = match x_dtype {
|
|
|
|
+ DType::F16 | DType::BF16 => DType::F32,
|
|
|
|
+ d => d,
|
|
|
|
+ };
|
|
|
|
+ let (_bsize, _seq_len, hidden_size) = x.dims3()?;
|
|
|
|
+ let x = x.to_dtype(internal_dtype)?;
|
|
|
|
+ let mean_x = (x.sum_keepdim(2)? / hidden_size as f64)?;
|
|
|
|
+ let x = x.broadcast_sub(&mean_x)?;
|
|
|
|
+ let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?;
|
|
|
|
+ let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
|
|
|
|
+ let x = x_normed
|
|
|
|
+ .to_dtype(x_dtype)?
|
|
|
|
+ .broadcast_mul(&self.weight)?
|
|
|
|
+ .broadcast_add(&self.bias)?;
|
|
|
|
+ Ok(x)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize, Default)]
|
|
|
|
+#[serde(rename_all = "lowercase")]
|
|
|
|
+enum PositionEmbeddingType {
|
|
|
|
+ #[default]
|
|
|
|
+ Absolute,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/configuration_bert.py#L1
|
|
|
|
+#[derive(Debug, Clone, PartialEq, Deserialize)]
|
|
|
|
+pub struct Config {
|
|
|
|
+ vocab_size: usize,
|
|
|
|
+ hidden_size: usize,
|
|
|
|
+ num_hidden_layers: usize,
|
|
|
|
+ num_attention_heads: usize,
|
|
|
|
+ intermediate_size: usize,
|
|
|
|
+ hidden_act: HiddenAct,
|
|
|
|
+ hidden_dropout_prob: f64,
|
|
|
|
+ max_position_embeddings: usize,
|
|
|
|
+ type_vocab_size: usize,
|
|
|
|
+ initializer_range: f64,
|
|
|
|
+ layer_norm_eps: f64,
|
|
|
|
+ pad_token_id: usize,
|
|
|
|
+ #[serde(default)]
|
|
|
|
+ position_embedding_type: PositionEmbeddingType,
|
|
|
|
+ #[serde(default)]
|
|
|
|
+ use_cache: bool,
|
|
|
|
+ classifier_dropout: Option<f64>,
|
|
|
|
+ model_type: Option<String>,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl Default for Config {
|
|
|
|
+ fn default() -> Self {
|
|
|
|
+ Self {
|
|
|
|
+ vocab_size: 30522,
|
|
|
|
+ hidden_size: 768,
|
|
|
|
+ num_hidden_layers: 12,
|
|
|
|
+ num_attention_heads: 12,
|
|
|
|
+ intermediate_size: 3072,
|
|
|
|
+ hidden_act: HiddenAct::Gelu,
|
|
|
|
+ hidden_dropout_prob: 0.1,
|
|
|
|
+ max_position_embeddings: 512,
|
|
|
|
+ type_vocab_size: 2,
|
|
|
|
+ initializer_range: 0.02,
|
|
|
|
+ layer_norm_eps: 1e-12,
|
|
|
|
+ pad_token_id: 0,
|
|
|
|
+ position_embedding_type: PositionEmbeddingType::Absolute,
|
|
|
|
+ use_cache: true,
|
|
|
|
+ classifier_dropout: None,
|
|
|
|
+ model_type: Some("bert".to_string()),
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl Config {
|
|
|
|
+ fn _all_mini_lm_l6_v2() -> Self {
|
|
|
|
+ // https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json
|
|
|
|
+ Self {
|
|
|
|
+ vocab_size: 30522,
|
|
|
|
+ hidden_size: 384,
|
|
|
|
+ num_hidden_layers: 6,
|
|
|
|
+ num_attention_heads: 12,
|
|
|
|
+ intermediate_size: 1536,
|
|
|
|
+ hidden_act: HiddenAct::Gelu,
|
|
|
|
+ hidden_dropout_prob: 0.1,
|
|
|
|
+ max_position_embeddings: 512,
|
|
|
|
+ type_vocab_size: 2,
|
|
|
|
+ initializer_range: 0.02,
|
|
|
|
+ layer_norm_eps: 1e-12,
|
|
|
|
+ pad_token_id: 0,
|
|
|
|
+ position_embedding_type: PositionEmbeddingType::Absolute,
|
|
|
|
+ use_cache: true,
|
|
|
|
+ classifier_dropout: None,
|
|
|
|
+ model_type: Some("bert".to_string()),
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
|
|
|
|
+ let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
|
|
|
|
+ Ok(Embedding::new(embeddings, hidden_size))
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
|
|
|
|
+ let weight = vb.get((size2, size1), "weight")?;
|
|
|
|
+ let bias = vb.get(size2, "bias")?;
|
|
|
|
+ Ok(Linear::new(weight, Some(bias)))
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct Dropout {
|
|
|
|
+ #[allow(dead_code)]
|
|
|
|
+ pr: f64,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl Dropout {
|
|
|
|
+ fn new(pr: f64) -> Self {
|
|
|
|
+ Self { pr }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
|
|
+ // TODO
|
|
|
|
+ Ok(x.clone())
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
|
|
|
|
+ let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) {
|
|
|
|
+ (Ok(weight), Ok(bias)) => (weight, bias),
|
|
|
|
+ (Err(err), _) | (_, Err(err)) => {
|
|
|
|
+ if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) {
|
|
|
|
+ (weight, bias)
|
|
|
|
+ } else {
|
|
|
|
+ return Err(err);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ };
|
|
|
|
+ Ok(LayerNorm::new(weight, bias, eps))
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L180
|
|
|
|
+struct BertEmbeddings {
|
|
|
|
+ word_embeddings: Embedding,
|
|
|
|
+ position_embeddings: Option<Embedding>,
|
|
|
|
+ token_type_embeddings: Embedding,
|
|
|
|
+ layer_norm: LayerNorm,
|
|
|
|
+ dropout: Dropout,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl BertEmbeddings {
|
|
|
|
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
|
|
|
+ let word_embeddings = embedding(
|
|
|
|
+ config.vocab_size,
|
|
|
|
+ config.hidden_size,
|
|
|
|
+ vb.pp("word_embeddings"),
|
|
|
|
+ )?;
|
|
|
|
+ let position_embeddings = embedding(
|
|
|
|
+ config.max_position_embeddings,
|
|
|
|
+ config.hidden_size,
|
|
|
|
+ vb.pp("position_embeddings"),
|
|
|
|
+ )?;
|
|
|
|
+ let token_type_embeddings = embedding(
|
|
|
|
+ config.type_vocab_size,
|
|
|
|
+ config.hidden_size,
|
|
|
|
+ vb.pp("token_type_embeddings"),
|
|
|
|
+ )?;
|
|
|
|
+ let layer_norm = layer_norm(
|
|
|
|
+ config.hidden_size,
|
|
|
|
+ config.layer_norm_eps,
|
|
|
|
+ vb.pp("LayerNorm"),
|
|
|
|
+ )?;
|
|
|
|
+ Ok(Self {
|
|
|
|
+ word_embeddings,
|
|
|
|
+ position_embeddings: Some(position_embeddings),
|
|
|
|
+ token_type_embeddings,
|
|
|
|
+ layer_norm,
|
|
|
|
+ dropout: Dropout::new(config.hidden_dropout_prob),
|
|
|
|
+ span: tracing::span!(tracing::Level::TRACE, "embeddings"),
|
|
|
|
+ })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let (_bsize, seq_len) = input_ids.dims2()?;
|
|
|
|
+ let input_embeddings = self.word_embeddings.forward(input_ids)?;
|
|
|
|
+ let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?;
|
|
|
|
+ let mut embeddings = (&input_embeddings + token_type_embeddings)?;
|
|
|
|
+ if let Some(position_embeddings) = &self.position_embeddings {
|
|
|
|
+ // TODO: Proper absolute positions?
|
|
|
|
+ let position_ids = (0..seq_len as u32).collect::<Vec<_>>();
|
|
|
|
+ let position_ids = Tensor::new(&position_ids[..], input_ids.device())?;
|
|
|
|
+ embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)?
|
|
|
|
+ }
|
|
|
|
+ let embeddings = self.layer_norm.forward(&embeddings)?;
|
|
|
|
+ let embeddings = self.dropout.forward(&embeddings)?;
|
|
|
|
+ Ok(embeddings)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct BertSelfAttention {
|
|
|
|
+ query: Linear,
|
|
|
|
+ key: Linear,
|
|
|
|
+ value: Linear,
|
|
|
|
+ dropout: Dropout,
|
|
|
|
+ num_attention_heads: usize,
|
|
|
|
+ attention_head_size: usize,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+ span_softmax: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl BertSelfAttention {
|
|
|
|
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
|
|
|
+ let attention_head_size = config.hidden_size / config.num_attention_heads;
|
|
|
|
+ let all_head_size = config.num_attention_heads * attention_head_size;
|
|
|
|
+ let dropout = Dropout::new(config.hidden_dropout_prob);
|
|
|
|
+ let hidden_size = config.hidden_size;
|
|
|
|
+ let query = linear(hidden_size, all_head_size, vb.pp("query"))?;
|
|
|
|
+ let value = linear(hidden_size, all_head_size, vb.pp("value"))?;
|
|
|
|
+ let key = linear(hidden_size, all_head_size, vb.pp("key"))?;
|
|
|
|
+ Ok(Self {
|
|
|
|
+ query,
|
|
|
|
+ key,
|
|
|
|
+ value,
|
|
|
|
+ dropout,
|
|
|
|
+ num_attention_heads: config.num_attention_heads,
|
|
|
|
+ attention_head_size,
|
|
|
|
+ span: tracing::span!(tracing::Level::TRACE, "self-attn"),
|
|
|
|
+ span_softmax: tracing::span!(tracing::Level::TRACE, "softmax"),
|
|
|
|
+ })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn transpose_for_scores(&self, xs: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let mut new_x_shape = xs.dims().to_vec();
|
|
|
|
+ new_x_shape.pop();
|
|
|
|
+ new_x_shape.push(self.num_attention_heads);
|
|
|
|
+ new_x_shape.push(self.attention_head_size);
|
|
|
|
+ let xs = xs.reshape(new_x_shape.as_slice())?.transpose(1, 2)?;
|
|
|
|
+ xs.contiguous()
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let query_layer = self.query.forward(hidden_states)?;
|
|
|
|
+ let key_layer = self.key.forward(hidden_states)?;
|
|
|
|
+ let value_layer = self.value.forward(hidden_states)?;
|
|
|
|
+
|
|
|
|
+ let query_layer = self.transpose_for_scores(&query_layer)?;
|
|
|
|
+ let key_layer = self.transpose_for_scores(&key_layer)?;
|
|
|
|
+ let value_layer = self.transpose_for_scores(&value_layer)?;
|
|
|
|
+
|
|
|
|
+ let attention_scores = query_layer.matmul(&key_layer.t()?)?;
|
|
|
|
+ let attention_scores = (attention_scores / (self.attention_head_size as f64).sqrt())?;
|
|
|
|
+ let attention_probs = {
|
|
|
|
+ let _enter_sm = self.span_softmax.enter();
|
|
|
|
+ candle_nn::ops::softmax(&attention_scores, candle_core::D::Minus1)?
|
|
|
|
+ };
|
|
|
|
+ let attention_probs = self.dropout.forward(&attention_probs)?;
|
|
|
|
+
|
|
|
|
+ let context_layer = attention_probs.matmul(&value_layer)?;
|
|
|
|
+ let context_layer = context_layer.transpose(1, 2)?.contiguous()?;
|
|
|
|
+ let context_layer = context_layer.flatten_from(candle_core::D::Minus2)?;
|
|
|
|
+ Ok(context_layer)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct BertSelfOutput {
|
|
|
|
+ dense: Linear,
|
|
|
|
+ layer_norm: LayerNorm,
|
|
|
|
+ dropout: Dropout,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl BertSelfOutput {
|
|
|
|
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
|
|
|
+ let dense = linear(config.hidden_size, config.hidden_size, vb.pp("dense"))?;
|
|
|
|
+ let layer_norm = layer_norm(
|
|
|
|
+ config.hidden_size,
|
|
|
|
+ config.layer_norm_eps,
|
|
|
|
+ vb.pp("LayerNorm"),
|
|
|
|
+ )?;
|
|
|
|
+ let dropout = Dropout::new(config.hidden_dropout_prob);
|
|
|
|
+ Ok(Self {
|
|
|
|
+ dense,
|
|
|
|
+ layer_norm,
|
|
|
|
+ dropout,
|
|
|
|
+ span: tracing::span!(tracing::Level::TRACE, "self-out"),
|
|
|
|
+ })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let hidden_states = self.dense.forward(hidden_states)?;
|
|
|
|
+ let hidden_states = self.dropout.forward(&hidden_states)?;
|
|
|
|
+ self.layer_norm.forward(&(hidden_states + input_tensor)?)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L392
|
|
|
|
+struct BertAttention {
|
|
|
|
+ self_attention: BertSelfAttention,
|
|
|
|
+ self_output: BertSelfOutput,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl BertAttention {
|
|
|
|
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
|
|
|
+ let self_attention = BertSelfAttention::load(vb.pp("self"), config)?;
|
|
|
|
+ let self_output = BertSelfOutput::load(vb.pp("output"), config)?;
|
|
|
|
+ Ok(Self {
|
|
|
|
+ self_attention,
|
|
|
|
+ self_output,
|
|
|
|
+ span: tracing::span!(tracing::Level::TRACE, "attn"),
|
|
|
|
+ })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let self_outputs = self.self_attention.forward(hidden_states)?;
|
|
|
|
+ let attention_output = self.self_output.forward(&self_outputs, hidden_states)?;
|
|
|
|
+ Ok(attention_output)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L441
|
|
|
|
+struct BertIntermediate {
|
|
|
|
+ dense: Linear,
|
|
|
|
+ intermediate_act: HiddenActLayer,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl BertIntermediate {
|
|
|
|
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
|
|
|
+ let dense = linear(config.hidden_size, config.intermediate_size, vb.pp("dense"))?;
|
|
|
|
+ Ok(Self {
|
|
|
|
+ dense,
|
|
|
|
+ intermediate_act: HiddenActLayer::new(config.hidden_act),
|
|
|
|
+ span: tracing::span!(tracing::Level::TRACE, "inter"),
|
|
|
|
+ })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let hidden_states = self.dense.forward(hidden_states)?;
|
|
|
|
+ let ys = self.intermediate_act.forward(&hidden_states)?;
|
|
|
|
+ Ok(ys)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L456
|
|
|
|
+struct BertOutput {
|
|
|
|
+ dense: Linear,
|
|
|
|
+ layer_norm: LayerNorm,
|
|
|
|
+ dropout: Dropout,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl BertOutput {
|
|
|
|
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
|
|
|
+ let dense = linear(config.intermediate_size, config.hidden_size, vb.pp("dense"))?;
|
|
|
|
+ let layer_norm = layer_norm(
|
|
|
|
+ config.hidden_size,
|
|
|
|
+ config.layer_norm_eps,
|
|
|
|
+ vb.pp("LayerNorm"),
|
|
|
|
+ )?;
|
|
|
|
+ let dropout = Dropout::new(config.hidden_dropout_prob);
|
|
|
|
+ Ok(Self {
|
|
|
|
+ dense,
|
|
|
|
+ layer_norm,
|
|
|
|
+ dropout,
|
|
|
|
+ span: tracing::span!(tracing::Level::TRACE, "out"),
|
|
|
|
+ })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let hidden_states = self.dense.forward(hidden_states)?;
|
|
|
|
+ let hidden_states = self.dropout.forward(&hidden_states)?;
|
|
|
|
+ self.layer_norm.forward(&(hidden_states + input_tensor)?)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L470
|
|
|
|
+struct BertLayer {
|
|
|
|
+ attention: BertAttention,
|
|
|
|
+ intermediate: BertIntermediate,
|
|
|
|
+ output: BertOutput,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl BertLayer {
|
|
|
|
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
|
|
|
+ let attention = BertAttention::load(vb.pp("attention"), config)?;
|
|
|
|
+ let intermediate = BertIntermediate::load(vb.pp("intermediate"), config)?;
|
|
|
|
+ let output = BertOutput::load(vb.pp("output"), config)?;
|
|
|
|
+ Ok(Self {
|
|
|
|
+ attention,
|
|
|
|
+ intermediate,
|
|
|
|
+ output,
|
|
|
|
+ span: tracing::span!(tracing::Level::TRACE, "layer"),
|
|
|
|
+ })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let attention_output = self.attention.forward(hidden_states)?;
|
|
|
|
+ // TODO: Support cross-attention?
|
|
|
|
+ // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L523
|
|
|
|
+ // TODO: Support something similar to `apply_chunking_to_forward`?
|
|
|
|
+ let intermediate_output = self.intermediate.forward(&attention_output)?;
|
|
|
|
+ let layer_output = self
|
|
|
|
+ .output
|
|
|
|
+ .forward(&intermediate_output, &attention_output)?;
|
|
|
|
+ Ok(layer_output)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L556
|
|
|
|
+struct BertEncoder {
|
|
|
|
+ layers: Vec<BertLayer>,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl BertEncoder {
|
|
|
|
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
|
|
|
+ let layers = (0..config.num_hidden_layers)
|
|
|
|
+ .map(|index| BertLayer::load(vb.pp(&format!("layer.{index}")), config))
|
|
|
|
+ .collect::<Result<Vec<_>>>()?;
|
|
|
|
+ let span = tracing::span!(tracing::Level::TRACE, "encoder");
|
|
|
|
+ Ok(BertEncoder { layers, span })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let mut hidden_states = hidden_states.clone();
|
|
|
|
+ // Use a loop rather than a fold as it's easier to modify when adding debug/...
|
|
|
|
+ for layer in self.layers.iter() {
|
|
|
|
+ hidden_states = layer.forward(&hidden_states)?
|
|
|
|
+ }
|
|
|
|
+ Ok(hidden_states)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L874
|
|
|
|
+pub struct BertModel {
|
|
|
|
+ embeddings: BertEmbeddings,
|
|
|
|
+ encoder: BertEncoder,
|
|
|
|
+ pub device: Device,
|
|
|
|
+ span: tracing::Span,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl BertModel {
|
|
|
|
+ pub fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
|
|
|
+ let (embeddings, encoder) = match (
|
|
|
|
+ BertEmbeddings::load(vb.pp("embeddings"), config),
|
|
|
|
+ BertEncoder::load(vb.pp("encoder"), config),
|
|
|
|
+ ) {
|
|
|
|
+ (Ok(embeddings), Ok(encoder)) => (embeddings, encoder),
|
|
|
|
+ (Err(err), _) | (_, Err(err)) => {
|
|
|
|
+ if let Some(model_type) = &config.model_type {
|
|
|
|
+ if let (Ok(embeddings), Ok(encoder)) = (
|
|
|
|
+ BertEmbeddings::load(vb.pp(&format!("{model_type}.embeddings")), config),
|
|
|
|
+ BertEncoder::load(vb.pp(&format!("{model_type}.encoder")), config),
|
|
|
|
+ ) {
|
|
|
|
+ (embeddings, encoder)
|
|
|
|
+ } else {
|
|
|
|
+ return Err(err);
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ return Err(err);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ };
|
|
|
|
+ Ok(Self {
|
|
|
|
+ embeddings,
|
|
|
|
+ encoder,
|
|
|
|
+ device: vb.device().clone(),
|
|
|
|
+ span: tracing::span!(tracing::Level::TRACE, "model"),
|
|
|
|
+ })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ pub fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
|
|
|
|
+ let _enter = self.span.enter();
|
|
|
|
+ let embedding_output = self.embeddings.forward(input_ids, token_type_ids)?;
|
|
|
|
+ let sequence_output = self.encoder.forward(&embedding_output)?;
|
|
|
|
+ Ok(sequence_output)
|
|
|
|
+ }
|
|
|
|
+}
|